
Communication Efficient Perfectly
Secure VSS and MPC in

Asynchronous Networks with
Optimal Resilience

AFRICACRYPT 2010

Arpita Patra (IIT Madras)

Ashish Choudhury (IIT Madras)

Prof. C. Pandu Rangan (IIT Madras)

• Perfectly secure Asynchronous Verifiable Secret Sharing

The Main Contribution

 Carried out among n parties

 At most t parties can be actively corrupted by a
computationally unbounded adversary

 Possible iff n ≥ 4t + 1

• [BH07]: Most communication efficient perfectly secure
AVSS with n = 4t + 1

 Generates t-sharing of  secrets

 O(n2 log |F|) bits of private communication

• This paper: A new perfectly secure AVSS with n = 4t + 1

 Generates d-sharing of  secrets, for any t ≤ d ≤ 2t

 O(n2 log |F|) bits of private communication

• Application of our new AVSS:

The Main Contribution Contd …

• [BH07]: Most communication efficient perfectly secure
AMPC with n = 4t + 1

 Optimally resilient Perfectly secure Asynchronous
Multiparty Computation Protocol with n = 4t + 1

 Communicates O(n2 log |F|) bits per multiplication gate

 Communicates O(n3 log |F|) bits per multiplication gate

Verifiable Secret Sharing (VSS) [CGMA85]

 Sharing Phase

– D initially holds secret s and each party Pi finally
holds some private information vi --- share of s

– At gets no information about s from the private
information of corrupted parties

• Extends Secret Sharing [Sha79, Bla79] to the case of
active corruption

• n parties P = {P1, …, Pn}, dealer D (e.g., D = P1)

• t corrupted parties (possibly including D)  At

 Reconstruction Phase

– Reconstruction function is applied to obtain

s = Rec(v1, … , vn)

Asynchronous Networks

• No global clock in the system

• The communication channels have arbitrary, yet
finite delay (i.e the messages will reach eventually)

• Inherent Difficulty: Cannot distinguish between a
slow sender and a corrupted sender

• Cannot wait to receive messages from all the parties

• Techniques from synchronous world cannot be adapted

• At schedules all messages in the network

 Only schedules the messages of honest parties

 Messages of t potentially honest parties ignored

AVSS and Its Requirements

 Termination

(1) If D is honest, then all honest parties eventually
terminate Sh.

(2) If D is corrupted and some honest party terminates
Sh, then all honest parties eventually terminate Sh

(3) If honest parties terminate Sh and some honest
party initiates Rec, then all honest parties eventually
terminate Rec

• Any AVSS scheme (Sh, Rec) for sharing a secret s
satisfies the following

 Correctness

(1) If D is honest, all honest parties output s at the end of

Rec, irrespective of behavior of corrupted parties

(2) If D is corrupted and some honest party terminates
Sh, then there is a unique s* which is fixed, such that
all honest parties output s* at the end of Rec

 Also known as Strong Commitment

AVSS Requirements Contd …

 Secrecy

If D is honest and no honest party has begun Rec
then adversary gets no information about secret s

AVSS Requirements Contd …

• Perfect AVSS :

 Satisfies termination, correctness and secrecy
property without any error

 Possible iff n ≥ 4t + 1

• Statistical AVSS :

 Satisfies termination and correctness with
probability 1 – 2-(k) : k is the error parameter

 Possible iff n ≥ 3t + 1

• This paper : Perfect AVSS with n = 4t + 1

Types of AVSS

d-Sharing

• A value s is said to be d-shared by a dealer D  P if:

 D selects a random degree-d polynomial f(x), where f(0) = s

 D hands over si = f(i) to every party Pi  P

 si --- ith share of s

 [s1, s2, …, sn] --- d-sharing of s, denoted as [s]d

• Typically VSS/AVSS is used to generate t-sharing in
synchronous/asynchronous setting

 One of the main tools used in MPC/AMPC

Existing Perfect AVSS vs Our Perfect
AVSS with n = 4t + 1

Ref.
Type of
Sharing

of Shared
Secrets

Communication
Complexity

[BCG93] t-Sharing 1 O(n3 log|F|)

[BH07] t-Sharing l O(l n2 log|F|)

This
Article

d-Sharing
t ≤ d ≤ 2t

l O(l n2 log|F|)

Advantage of d-sharing Over t-sharing

• In the context of MPC:

 Evaluation of multiplication gate becomes very simple
with the help of 2t-sharing [DN07, BH07]

• In other applications:

 With t-sharing, only constant coefficient of the sharing
polynomial will be information theoretically secure

 With d-sharing, (d + 1 - t) coefficients of the sharing
polynomial will be information theoretically secure

 Can be useful to implement common coin primitive, which
is used for designing Asynchronous Byzantine Agreement
Protocols

Tool Used in Our Protocol

Finding (n, t)-Star in a Graph

 G = (V, E) is an undirected graph, V = P = {P1, …, Pn}

• Definition: (n, t)-star

 (C, D), where C  D  P is called (n, t)-star in G if:

 |C| ≥ (n – 2t) , |D| ≥ (n - t)

 For every Pj  C and Pk  D, the edge (Pj, Pk)  E

• Algorithm for finding (n, t)-star in a graph [BCG93]

 Outputs either (n, t)-star or the message star not found

 If G has a clique of size (n - t) then always outputs star

Idea Behind AVSS Protocol of [BCG93, BH07]

Sharing Phase : n = 4t + 1

• D selects a random bi-variate polynomial F(x,y) of degree t in both x
and y, such that F(0,0) = s

• D privately sends fi(x) = F(x, i) and gi(y) = F(i,y) to party Pi

F(1,1) F(2,1) F(3,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

f1(x)

g1(y)

n = 5, t = 1

F(1,1) F(2,1) F(3,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

• Parties privately communicate with each other to check the
consistency of the values distributed by D

Corrupted D could have
distributed inconsistent

values

• Party Pi privately sends to Pj the following:

• fij = fi(j) = F(j, i) • gij = gi(j) = F(i, j)

P3

P1

P1 P3

Idea Behind AVSS Protocol of [BCG93, BH07]

Sharing Phase : n = 4t + 1

F(1,1) F(2,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

• Party Pj on receiving fij and gij from party Pi, checks:

Ideally fi(j) = gj(i)
And

gi(j) = fj(i)
Should hold

F(3,1)

• fij gj(i)=
?

• gij fj(i)=
?

• If both the test passes, Pj A-casts OK(Pj, Pi) signal

Idea Behind AVSS Protocol of [BCG93, BH07]

Sharing Phase : n = 4t + 1

F(1,1) F(2,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

• Party Pj on receiving fij

and gij from Pi, checks:

F(3,1)

• fij gj(i)=
?

• gij fj(i)=
?

• If both the test passes,
Pj A-casts OK(Pj, Pi) signal

• Local Computation (by each party)

 Construct a graph G = (V, E), where V = {P1, …, Pn} and (Pi, Pj)  E if Pi

has A-cast OK(Pi, Pj) and Pj has A-cast OK(Pj, Pi)

 Keep applying Find-Star algorithm on G till some STAR (C, D) is
obtained

If D has behaved
honestly then the set of

honest parties will
eventually form STARAll honest parties will

eventually agree on
same STAR (if it

exists)

Idea Behind AVSS Protocol of [BCG93, BH07]

Sharing Phase : n = 4t + 1

F(1,1) F(2,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

F(3,1)

• Properties of STAR

(If it exists) :

• Property of STAR: for each
Pi  C and Pj  D, Pi has A-
cast OK(Pi, Pj) and Pj has A-
cast OK(Pj, Pi)

• The polynomials (row and column) of the honest parties in STAR
define a unique bi-variate polynomial of degree t in x and y. Why ?

• (n – 2t - t) = t + 1 honest parties in C and (n – t - t) = 2t + 1 honest
parties in D

• Honest parties in C and D have checked that their row and column
polynomial are pair-wise consistent

--- Defines a unique bi-variate of degree t in x and y

D has committed
some meaningful bi-
variate polynomial
and hence secret

Idea Behind AVSS Protocol of [BCG93, BH07]

Sharing Phase : n = 4t + 1

F(1,1) F(2,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

F(3,1)

• Each Pi  C, outputs fi(0) as ith share of s

f1(0)

f2(0)

f3(0)

f4(0)

• Each Pj  C reconstructs his share, consistent with the honest
parties in STAR (C, D) as follows:

• Pj applies ONLINE error correction on the share-share gi(j)’s
received from the Pi’s in D --t out of 3t + 1 share-share could be

corrupted

f5(0)

t out of

3t + 1

share-share

could be

corupted

ONLINE RS error
correction is possible

Consistent with bi-
variate defined by

honest parties in STAR

t-sharing

of s

Idea Behind AVSS Protocol of [BCG93, BH07]

Sharing Phase : n = 4t + 1 C = {P1, P2, P3}

D = {P1, P2, P3, P4}

Unsuccessful Extension of AVSS Protocol of
[BCG93, BH07] to Generate d-Sharing, for d > t

• To generate d-sharing, Dealer will select bi-variate
polynomial F(x, y) of degree d in x and degree t in y

 fi(x) = F(x, i) : degree d, gi(y) = F(i, y) : degree t

• If (C, D) is a STAR in the OK graph, then:

 fi(x) polynomials of honest parties in C define F(x, y)

 gi(y) polynomials of honest parties in D define F(x, y)

• s can be d-shared only by degree d polynomial F(x, 0) = f0(x)

 Each honest Pi  D already possess gi(0) = f0(i)

 If Pi  D, then parties in C cannot help Pi to get gi(0) = f0(i)

 Only 2t + 1 parties in C. So OEC will not work, as it
requires 3t + 1 parties to reconstruct t degree gi(y)

Our Approach for Generating d-Sharing,
Where t ≤ d ≤ 2t, n = 4t + 1

• The sharing phase of our AVSS is divided into sequence of
following three phases:

 Distribution Phase: D distributes information to parties

 Parties perform consistency check on the information
distributed by D

 Verification and Agreement on CORE Phase:

 If checking is successful then parties agree on a set of
3t + 1 parties called CORE, having certain properties

 Generation of d-sharing Phase:

 Executed only if CORE is agreed upon in last phase

 Parties perform computation on data received only from
parties in CORE during second phase to complete d-sharing

All three phases will
eventually terminate if D is

honest

If some honest party
terminates all three phases

then every other honest
party will also eventually do so

Our Approach for Generating d-Sharing,
Where t ≤ d ≤ 2t, n = 4t + 1

Distribution Phase

• D selects a random bi-variate polynomial F(x,y) of degree d
in both x and degree t in y, such that F(0,0) = s

• D privately sends fi(x) = F(x, i) and gi(y) = F(i, y) to Pi

 Row Polynomial: fi(x) of degree d

 Column Polynomial: pi(y) of degree t

Our Approach for Generating d-Sharing,
Where t ≤ d ≤ 2t, n = 4t + 1

Verification and Agreement on CORE Phase

• The goal of this phase is to check the existence of a set of
parties called CORE

• If a CORE exists then every honest party will agree on
CORE, where CORE is defined as follows

 CORE is a set of at least 3t + 1 parties such that:

 row polynomials of the honest parties in CORE define a
unique bivariate polynomial say, F’(x, y) of degree- (d, t)

 Moreover, if D is honest then F’(x, y) = F(x, y) where
F(x, y) was selected by D

Our Approach for Generating d-Sharing

Generation of d-sharing Through CORE

 CORE is a set of at least 3t + 1 parties such that:

 row polynomials of the honest parties in CORE define a
unique bivariate polynomial say, F’(x, y), of degree- (d, t)

F(1,1) F(2,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

F(3,1)
CORE = {P1, P2, P3, P4}

t = 1, n = 5, d = 2

{P1, P2, P3} : Honest
parties in CORE

Their row polynomials
define F’(x, y)

Our Approach for Generating d-Sharing

Generation of d-sharing Through CORE

 jth point on row polynomials of honest parties in CORE define
degree-t column polynomial p’j(y) = F’(j, y)

F(1,1) F(2,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

F(3,1)
CORE = {P1, P2, P3, P4}

t = 1, n = 5, d = 2

{P1, P2, P3} : Honest
parties in CORE

Their row polynomials
define F’(x, y)

p’1(y) = F’(1, y)

Our Approach for Generating d-Sharing

Generation of d-sharing Through CORE

 As |CORE| ≥ 3t + 1, each Pi  CORE can send f’i(j) = F’(j, i) to Pj

 Pj can apply OEC on f’i(j)’s to reconstruct p’j(y) and hence p’j(0)

F(1,1) F(2,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

F(3,1)
CORE = {P1, P2, P3, P4}

t = 1, n = 5, d = 2

{P1, P2, P3} : Honest
parties in CORE

Their row polynomials
define F’(x, y)

t out of 3t + 1

share-share could be corupted

ONLINE RS error
correction is possible

p’1(y) = F’(1, y)

Our Approach for Generating d-Sharing

Generation of d-sharing Through CORE

 Secret s’ = F’(0, 0) will be d-shared using degree-d polynomial
f’0(x) = F’(x, 0)

 Each honest party Pi will have the share f’0(i) = p’i(0) of s’

F(1,1) F(2,1) F(4,1) F(5,1)

F(1,2) F(2,2) F(3,2) F(4,2) F(5,2)

F(1,3) F(2,3) F(3,3) F(4,3) F(5,3)

F(1,4) F(2,4) F(3,4) F(4,4) F(5,4)

F(1,5) F(2,5) F(3,5) F(4,5) F(5,5)

F(3,1)
CORE = {P1, P2, P3, P4}

t = 1, n = 5, d = 2

{P1, P2, P3} : Honest
parties in CORE

Their row polynomials
define F’(x, y)

p’1(0) p’2(0) p’3(0) p’4(0) p’5(0)
d-sharing of s

How to check the
availability of CORE ??

Our Approach for Generating d-Sharing

Outline of Verification and Agreement on CORE Phase

• Parties privately exchange common values on their row and
column polynomial and accordingly A-cast OK signals

• Using the OK signals, OK graph is constructed

• Applying FIND-STAR algorithm on OK graph, a sequence of
distinct STARs are obtained

• Claim: Each STAR in OK graph defines a (d, t)-bivariate polynomial

• We check whether CORE can be generated from any STAR

 Using interesting features of STAR, specially C component

• Claim: If C component of some STAR has 2t + 1 honest parties
then CORE can be generated from the STAR

• Claim: If D is honest then eventually C component of some STAR
will have 2t + 1 honest parties

Generating a sequence of STARs
is required as we do not know
which STAR has 2t + 1 honest

parties in its C component

Checking Whether CORE Can be Generated from STAR

• Let (C, D) be some STAR

 Row polynomials of honest parties in C define F’(x, y) of degree-(d, t)

• Idea: Try to find how many other row polynomials lie on F’(x, y)

 list out all such Pj ’s whose column polynomial is pairwise consistent
with the row polynomials of at least 2t + 1 parties in C --- List F

 Claim: The column polynomial of each Pj  F lie on F’(x, y)

 Column polynomial of Pj is of degree-t and is consistent with row
polynomial of at least t + 1 honest parties in C

 list out all such Pj ’s whose row polynomial is pairwise consistent
with the column polynomials of at least d + t + 1 parties in F --- List E

 Claim: The row polynomial of each Pj  E lie on F’(x, y)

 Row polynomial of Pj is of degree-d and is paiwise consistent with
column polynomial of at least d + 1 honest parties in F

If |E| ≥ 3t + 1 then E is taken as
CORE

This process has to be repeated
for every distinct STAR in OK

graph

Reconstruction Phase of Our AVSS

• Let s be a secret which is d-shared among n parties using
degree-d polynomial f(x), where t ≤ d ≤ 2t and n = 4t + 1

 Each Pj  P privately sends sj, the jth share of s to Pi

• Party Pi  P wants to privately reconstruct s

 Pi applies OEC on received shares to reconstruct s

 [BCG93]: Any secret which is d-shared can be
reconstructed using OEC if t ≤ d ≤ 2t and n = 4t + 1

Designing AMPC Using Our AVSS

• A secret s is said to be (t, 2t)-shared if:

(t, 2t)-Sharing

 s is t-shared as well as 2t-shared

Protocol for Generating (t, 2t)-Sharing

• Dealer D t-shares secret s using degree-t polynomial f(x)

 Let [s1, …, sn] be the corresponding shares

• Dealer (2t – 1)-shares random r using (2t-1)-degree polynomial R(x)

 Let [r1, …, rn] be the corresponding shares

• g(x) = f(x) + x R(x) will be 2t-degree polynomial sharing s

 si + i ri : corresponding ith share

Overview of Our AMPC Protocol
• Our AMPC follows the approach of [BH07] and is a
sequence of following three phases:

1. Preparation Phase:

• (t, 2t)-sharing of  = cM + cR random values are generated

• cM and cR are number of multiplication and random
gates in the arithmetic circuit

• Each party (t, 2t)-shares (cM + cR) / (n – 2t) secrets

• Parties execute ACS protocol to identify a set of (n - t)
parties C who have done the sharing

• Sharing done by at least (n – 2t) parties in C is random

• Parties apply Vandermonde matrix on the sharings done
by the parties in C to generate cM + cR random sharings

Overview of Our AMPC Protocol

• Our AMPC follows the approach of [BH07] and is a
sequence of following three phases:

2. Input Phase:

• Each party t-shares their input using our AVSS

• Parties execute ACS to agree on a set of (n – t)
parties I who have done the sharing

• Only the inputs of the parties in C will be considered
for circuit evaluation

Overview of Our AMPC Protocol

• Our AMPC follows the approach of [BH07] and is a
sequence of following three phases:

3. Computation Phase:

• Linear gates evaluated locally due to linearity of t-sharing

• Multiplication : We follow approach of [DN07, BH07]

x y

z

• Given [x]t and [y]t, compute [z]t

• Let [r](t, 2t) be the associated (t, 2t)-sharing

- parties publicly reconstruct  and define default []t

• Parties compute []2t = [x]t [y]t + [r]2t

- parties compute [z]t = []t – [r]t

• We have designed communication efficient perfect AVSS
and perfect AMPC with optimal resilience

Conclusion

• Our protocols outperform the existing protocols in terms
of communication complexity

• Our AVSS can generate d-sharing of  secrets concurrently
for any d in the range t ≤ d ≤ 2t

 Explore several interesting features of STAR which were
not explored earlier

• Our protocol shares  secrets concurrently

 Significantly better than  parallel executions of protocol
sharing single secret

• [BCG93]: M. Ben-Or, R. Canetti, and O. Goldreich.
Asynchronous secure computation. In STOC, pp 52–61, 1993.

References

• [CGMA85]: B. Chor, S. Goldwasser, S. Micali and B. Awerbuch.
Verifiable secret sharing and achieving simultaneity in the
presence of faults. In STOC, pp 383–395, 1985.

• [BH07]: Z. Beerliov´a-Trub´ıniov´a and M. Hirt. Simple and
efficient perfectly-secure asynchronous MPC. In ASIACRYPT,
pages 376–392, 2007.

• [DN07]: I. Damgard and J. B. Nielsen. Scalable and
unconditionally secure multiparty computation. In CRYPTO,
pages 572–590, 2007.

